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0 < r< (22)

Tne angle of attack is limited by both the maximum lift limit,

CL , and the maximum load factor, (L/W)max* The effect on angle of
max

attack is shown as a function of airspeed in Fig. 1. The velocity where

these two limits meet is the corner velocity (Vc). The corner velocity

is the velocity at which the aircraft achieves its maximum turn rate and

therefore plays a very important role in minimum turning time problems.

CLCmax  -i

(L/W)max

Velocity V

Fig 1. Maximum angle of attack vs. velocity

For velocities below the corner velocity, the angle of attack is

bounded by the maximum lift limit. Solving Eq (15) for the maximum

ingle of attack results in

l 0.2 radians (V < VC) (23)

13



Atmospheric Model

The NASA 1962 Standard Atmosphere (8) was used for this study.

Atmospheric density was taken to be p = ap0  , where a is the density

ratio and is defined as

(n--g0 )n-i

P ( - )  0 h } (21)
0

where

PO= 0.002377 slugs/ft3

go = 32.174 ft/sec
2

TO = 518.688 0R

n 1.235

R = 1715 ft2/sec 2 - R

Control Variable Constraints

Two control variables, the throttle setting and The angle of

attack, are constrained by physical considerations.

The thrust can neither be greater than the maximum thrust nor less

than the minimum thrust, which is taken to be zero. Since the tnrottle

setting is defined in Eq (19) in terms of the maximum thrust, the

throttle setting is limited to

12



T T T T (20) 2
W- W

W max

The formulation of lift, drag, and thrust to weight ratios has I
introduced two control variables, a and T , and several aircraft

parameters. The values of these parameters complete the specification

of the aircraft model. The values used in this investigation were

chosen to agree with previous studies so results may be compared and are

W = 12,150 Lb SW 237 ft2

KI = 0.05 T =1.5 4
max

CL = 5.0 CD = 0.02

0

L(p) = 7.22 CL = 1.0
max max

These values represent the nominal aircraft. As pointed out by

Brinson (7:9), the drag model is unrealistically low. Also, a thrust to

weight ratio of 1.5 is considerably higher than that dchieved by modern

high performance aircraft. After results have been obtained with these

parameters, the values of (T/W)max and K, will be varied to examine

the effects of thrust vectoring on a more realistic aircraft model.

1.1



CL = CL a (15)

Lo _

Substituting these expressions into Eqs (13) and (14) and dividing

by the weight gives

L pV2SW (17)W -. C. a

0 - (C 2 KCL2

( + lCL (18)

0I

Since the maximum available thrust remains constant during the

turn, thrust can be written as

T =Tmax 7T (19)

where TT is now the control variable for thrust and is referred to as

the throttle or power setting. Dividing by W gives the thrust to

weight ratio

10



y { (sinEcos - cos~sinvsini)

+ L cos- cosy} (12)

These equations are written in the wind axes and describe the

aircraft motion with respect to an earth-fixed coordinate frame. The

state variables are X , Y , h , V , X , and y . The variables i , e

and v are controls. The aircraft weight, W , and gravitational

acceleration, g , are assumed constant during the maneuver. The initial

altitude for all maneuvers is 13,990 feet. The gravitational

acceleration at that altitude, g : 32.131 ft/sec 2 (8:160), is used as

the constant value during the turn.

The forces L , D , and T will be discussed in the next paragraphs

and will gave rise to two more control variables.

Aircraft Characteristics

The common coefficient forms of the aerodynamic lift and drag

forces are

pV2SwCL -

L - 2 L(13)

pV2SWCD (14)

From incompressible aerodynamic and thin airfoil theories, the lift

and drag coefficients can be expressed as

9 1



mV : T cosecosv - D - mgsiny (4)

X cosvcosY - y sinP

1 { T cosFsinv - Q + mgsinilcosy } (5)

x sinpcosy + Y cosP =

1 {T sine + L - mgcospcosy} (6)

Since this study does not allow for sideforce, Q = 0. Rearranging,

the equations of motion become

X v cosycosx (7)

: V cosysinx (8)

h v siny (9)

: g coscosv W siny } (10)

= c { I (cosesinvcosp + sinsinp)X Vcosy I

+ L sin, } (1i)w
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If. The Minimum Time to Turn Problem

-~Before results can be analyzed and compared, it is necessary to

completely define all dspects of the problem. The problem will be

defined in terms of the maneuver to be flown, the equations describing

the motion of the aircraft, the characteristics which model the

aircraft, atmospheric properties, and practical physical constraints on

the control variables.

The Maneuver

The maneuver is defined by specifying initial and final conditions.

The turn is initiated with the aircraft in straight (zero heading angle)

and level (zero flight path angle) flight at an altitude of 13,990 feet

and a specified initial velocity. The maneuver is completed when the ..

aircraft reaches a final heading angle of 1800 with zero flignt path

angle.

Equations of Motion

The equations of motion for flight of a point mass aircraft over a

flat earth are derived by Miele (11:42-49) as

x V cosy cosx

Y V cosY sinX (2)

h V sinY (3)

7
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both to include sideforce. Optimal control schedules, trajectories, and

times were reported for three sets of initial conditions, two of which

are the same dS those used by Johnson (5) and Finnerty (6) . Since the

original aircraft model from (4) was considered unrealistic due to its

low induced drag and high thrust to weight ratio, Brinson (7) also

varied these two parameters while excluding sideforce in an attempt to

match the results of Well and Berger (10). While only moderately

successful in this attempt, the results are useful for evaluating the

benefits of thrust vectoring to reduce turning times.

The results of these previous studies are summarized in Appendix G.

6



The results of this study are then discussed and the use of thrust

vectoring is compared against other methods of reducing turning time.

Finally, conclusions and recommendations are given in Section VII.

Summary of Current Knowledge0

Humphreys, Hennig, Bolding and Helgeson (4) used a sequential

gradient-restoration algorithm to determine the optimal controls

required for an aircraft to make a minimum time turn in three

dimensions. For two different sets of initial conditions, a variety of

final conditions and thrust to weight ratios were considered. Three

controls were used: angle of attack, bank angle, and thrust.

Johnson (5) used a suboptimal numerical technique to find optimal

control schedules which minimized the turning time. The same aircraft

model and two cases reported in (4) were used to verify the technique

and to compare the effects of in-flight thrust reversing on reducing the

time to turn. Finnerty (6) used this same technique and

thrust-reversing aircraft, but restricted the maneuvers to the vertical

plane.

Well and Berger (10) used a different optimization technique, a

multiple-shooting algorithm, to investigate minimum time 1800 turns.

However, since the specific aircraft characteristics they used are

different from those given in (4) and subsequently used by Johnson (5)

and Finnerty (6), a direct comparison of results is impossible. The

conclusions of (10) do serve as a good qualitative check of optimal

minimum time maneuver sequences.

Most recently, Brinson (7) used the aircraft model from (4) and the

suboptimal numerical technique developed by Johnson (5), but modified

5
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thin airfoil theories. Since the duration of the maneuver is small,

typicilly on the order of 10 seconds, the fuel consumed during the

maneuver is negligible and the aircraft weight remains constant. The

aircraft engine is considered an ideal jet. Since the maneuver covers a

small altitude range, the corresponding small variations in atmospheric

density have little effect on the engine performance, and the maximum

avdilable thrust remains constant. Additionally, it is assumeo that the

aircraft flies a coordinated turn (i.e., zero sideslip).

Finally, the controls are allowed to vary instantaneously. This

simplification eliminates the need to consider controller response

characteristics which, although obviously an important consideration in

the implementation of any control schedule, would only cloud the

comparison of results against those of studies investigating other ways

to reduce turning time.

Approach

The particular aircraft model, initial state, and final conditions

used in this investigation were chosen from previous studies so

meaningful comparisons could be made between the various control

strategies.

Unfortunately, this results in d two-point boundary value problem

which cannot be solved in closed form. Therefore, a numerical technique

must be employed to find the optimal controls and resultant

trajectories. The choice of the particular technique used in this

study, the steepest-ascent method (9), is discussed in Section III. The

method is presented in detail in Section IV, while the implementation

and solution of the problem is covered in Section V.

4
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Assumptions

Several dssumptions regarding the aircraft, its dynamics, and the

controls are incorporated into this study. These assumptions are not

only necessary to reduce the complexity of the problem to manageable

proportions, but are common in this type of study as a source of

meaningful comparisons of results. The assumptions are

1. aircraft is point mass

2. flat, non-rotating earth

3. NASA 1962 Standard Atmosphere

(I4. constant gravitational acceleration

5. C L =CL 0' (up to stall)
2

6. C0D = C0D + KlIC L (parabolic drag polar)

7. aircraft weight remains constant during maneuver

8. ideal jet engine

9. constant maximum available thrust

10. coordinated turn (no sideslip)

11. instantaneous controls

(e The aircraft is modelled as a point mass over a flat, non-rotating

earth. Atmospheric properties are taken from the NASA 1962 Standard

Atmosphere (8) and the gravitational acceleration is assumed to be

9 constant over tne small altitude range covered during the maneuver. The

lift coefficient is taken to be a linear function of the angle of attack

up to the stall limit, while the drag coefficient is a function of the

square of the lift coefficient (parabolic drag polar). These lift and

drdg assumptions are substantiated by incompressible aerodynamic and

3



Several studies present optimal controls and trajectories to

minimize turning time. Humphreys, Hennig, Bolding and Helgeson (4)

investigated three-dimensional aircraft dynamics. Johnson (5) included

the possibility of in-flight thrust reversal. Finnerty (6) constrained

maneuvers to the vertical plane. Brinson (7) considered the effects of

sideforce in reducing the time to turn. However, the use of vectored

thrust has not been addressed. This study, then, examines the effects

of thrust vectoring on minimizing tne time to turn for a nigh

performance aircraft.

Problem Statement

This investigation seeks the optimal control schedules and

resulting trajectories which will minimize the time to maneuver a high

performance aircraft with thrust vectoring capability from a given

initial state to a prescribed set of final conditions.

The controls to be optimized are bank angle, angle of attack,

thrust, thrust angle of attack, and thrust sideslip angle. These

controls are subject to practical physical constraints: maximum angle

of attack limit, maximum structural load factor, and minimum and maximum

thrust.

To evaluate the effects of thrust vectoring on in-flight

maneuverability, the optimal controls and resultant trajectories and

minimum turning times will be obtained and compared against the results

of previous studies.

2
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W W.

MINIMUM TIME TURNS USING VECTORED THRUST

I. Introduction

Background

In air-to-air combat, minimum time turns are important for both the

attacker and the evader. The normal procedure is to bank the aircraft

and to use only a component of the lift vector for turning the aircraft.

The maximum turn rate that an aircraft can achieve is limited by

physical constraints; in particular, structural and angle of attack

limits. Since aircraft designed for similar missions (i.e., fighter

aircraft) tend to have similar design considerations and constraints,

they consequently ex'hibit similar turning rates and times.

In an effort to reduce turning time and increase in-flight

maneuverability, the Air Force is currently investigating the use of

vectored engine thrust and expects "performance may very well be

boosted" (1). By vectoring thrust, it is possible that an aircraft will

get to its corner velocity in less time - the corner velocity being the

velocity at which the aircraft achieves its maximum turn rate.

Noteably, a two-dimensional convergent/divergent nozzle has been

successfully ground demonstrated (2). The F-15 advanced technology

short takeoff and ldnding (STOL) demonstrator aircraft with

thrust-directing two-dimensional engine nozzles will be flight tested in

1988 (3). The "technology developed in the STOL demonstrator program

will 'have far-reaching implications for the Air Force, especially for

the next generation of fighters.'" This flight demonstration is also

considered "...critical for future dircraft programs."

... - . . .. -,. - . . .. . .-. . . . . . .. . .. -. - . .. = . . - • .. .> . -" f - . , -.1
- I - - - - ' .- i . . ' .- -" " . ' ". - -. . " . . . -L - - - . , .. - , . - -, . -. . . , ' - .



Abstract

The objective of this investigation is to determine the optimal

-controls and trajectories which minimize the time to turn for d high

performance aircraft with thrust vectoring capability. All

determinations are subject to practical physical constraints. The

determined controls and trajectories are then compared against other

methods of turning in minimum time to conclude the effects and

advantages of thrust vectoring.

The results indicate that the use of vectored tnrust can

substantially reduce turning times and increase in-flight

maneuverability. The greater the velocity at which the turn is

initiated, the more the range of thrust vectoring capability is used and

the greater the reduction in turning time.

xi
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For velocities above the corner velocity, the angle of attack is

limited by the maximum load factor, 7.22. Substituting this value into

Eq (17) gives

PV2 W <La 7.22 (V > VC) (24)

Using the relation for the density, Eq (21), and substituting for

known parameters reduces Eq (24) to

S 622868 (V > VC )  (25)•- >VV2

O* 2

Eqs (23) and (25) describe the angle of attack limits as shown in

Fig i. The corner velocity is the velocity at which the lift and load

factor limits are equal and may be solved for by equating Eqs (23) and

(25)

0.2 - 62286.8 (26)
C

14

aV2( V)(6

-,~.- ~..



which leads to

V = 558.06 (27)

The incorporation of these angle of attack constraints is detailed

in Section V. The importance of the corner velocity is addressed in

Section VI, Results.

No constraints were placed on the thrust angle of attack, E , and

sideslip, v While it does not appear that this is physically

practical (2, 3), these angles were allowed full range in order to

determine how much range of thrust vectoring would be exploited if it

were available. The effects of constraining the two thrust angles were

later examined and are discussed in Section VI, Results. No constraint

was placed on the bank angle.

15q
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111. The Optimial Control Problem

The formulation of the minimum turning time problem involves

first-order non-linear differential equations and partial specification

of initial and final conditions on the state variables. The optimal

control problem is to determine, out of all possible programs for the

control variables, the one program that minimizes or maximizes a

terminal quantity while simultaneously satisfying the required state

variable initial and final conditions. This is a two-point boundary

value problem which cannot be solved in closed form. A numerical

solution is required.

Many techniques and methods are available to solve this type of

problem and are widely reported in the literature. Three methods were

considered for this study. Johnson (5) transformed the optimal control

problem into a parameter optimization problem by assuming a known

mathematical form with a number of unknown constants for the control

variables. This reduces the problem to one of finding the coefficients

which satisfy the conditions of the problem.

Finnerty (6) and Brinson (7) also used this technique, modifying a

computer program developed by Johnson (5) to incorporate maneuver

constraints and aircraft characteristics particular to their studies.

The parameter optimization method was considered for this investigation,

but was rejected for two reasons. First, although a computer program

already existed, it had been modified SO Many times that accurate

documentation was non-existent. Since the existing program could not be

used and j new program would have to be written, one advantage of the

16



parameter optimization technique was negated. Second, it was feared

that the addition of more control variables, as required to add thrust

vectoring capability, and the corresponding increase in coefficients to

be determined would result in prohibitively long computer execution

times.

The generalized reduced gradient method, as reported by Gabriele

ana Ragsdell (12), was the next candidate technique considered for

solving this optimal control problem. However, the non-linedr control

variable inequality constraints required for the minimum time to turn

problem could not be easily incorporated. The use of a penalty function

to attach the constraints to the terminal pay-off function was

deliberated, but it was felt that this might compromise the optimality

of any solutions which might be obtained. Therefore, this technique was

also rejected.

A steepest-ascent method, presented in detail by Bryson and Denham

(9), was chosen to determine the optimal controls for minimizing turning

time for a high performance aircraft with thrust vectoring capability.

The procedure begins with a non-optimal control variable program. The

equations of motion are integrated forward from the initial conditions

using these nominal controls. In general, the resulting state variable

time histories will not satisfy the specified final conditions. Small

perturbations of the control variables about the nominal trajectory are

considered to drive the terminal quantities to their specified values

while simultaneously extremizing a pay-off function. For this problem,

the pay-off function is the final time. By continuing this process

along the direction of steepest ascent (or descent) in the control

17
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variable hyperspace, a control variable program that minimizes the time

to turn while satisfying final conditions is obtained.

Two qualities of the steepest-ascent method led to its being chosen

to solve this optimum programming problem. First, the method is

straightforward. Second, state variable inequality constraints are

easily incorporated.

It should be noted that neither the steepest-ascent method nor any

other method for numerically solving this type of optimal control

problem is guaranteed to find globally optimal solutions. Only relative

minima or maxima may be found. The determination of a global extremum

must be made by examining all of the local extrema. Since all of the

techniques considered have this same drawback, it was not a factor in

the choice of which method to use.

The steepest-ascent method is described in detail next, in Section

IV. The specific application of the method to the problem at hand is

presented in Section V.

18



IV. The Steepest-Ascent Method I
The steepest-ascent method (9) is a systematic procedure for

determining optimum programs for nonlinear systems with terminal

constraints. The technique begins with a nominal (non-optimum) control

variable program. By locally linearizing about these nominal controls,

the program is improved in steps until a pay-off function (final time)

is extremized while specified final conditions are satisfied.

Problem Statement

A general problem of finding the maximum of a nonlinear function of

many variables subject to nonlinear constraints on these variables may

be stated as follows:

Determine U (t) in the interval t0 < t < tf so as to maximize

= : ,(X (tf), tf) (28)

subject to constraints

_p = _[_ (tf) , tf] = 0 (29)

X : f5X (t), U (t), t] (30)

to and X (to) given (31)

tf determined by a fL[X (tf), tf] 0 (32)

19
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The nomenclature for this problem statement follows:

Ut) : [UI (t), Um (t)l (33)

is an m x 1 vector of control variable functions, which are free to be

chosen;

(t) = [X1 (t), ... Xn (t)]T (34)

is an n x 1 vector of state variable functions, which result from a

choice of U (t) and specified values of X (to) ;

= T (35)

is a p x 1 vector of terminal constraint functions, each of which is

a known function of X (tf) and tf;

.[f . fn]T (36)

is an n x i vector of known functions of X (t), U (t), and t ; is

the pay-off function and is a known function of X (tf) and tf ;12 0

is the stopping condition that determines the final time tf , and is a

known function of X (tf) and tf

20
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Formulation of the Methlod ]

The steepest-ascent method begins with a reasonable, nominal

control variable program, U*(t). These controls and the initial

conditions, Eq (31), are used in the differential equations of motion,

Eq (30j, to numerically calculate the state variable time history X*(t)

until Q = 0 In general, this nominal trajectory will not satisfy the

terminal conditions =0 or yield the maximum possible value of cp

Small perturbations 6U (t) U (t) - U*(t) about the nominal

control variable program cause perturbations in the state variable

programs, 6X (t) :_X (t) - X*(t) Substituting these perturbation

relations into the differential equations of motion, Eq (30), yields, to

first order in the perturbations, the linear differential equations for

6X (t)

d [ X(t)] = [F(t)]6X(t) + [G(t)] 6U(t) (37)

dt

where

__.. ....... f *

{F( t )} :(38)

n

n , . . . . . . ( fn -
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( 1 ) (

m

{G(t)}:

f n f n( Tffl)..........( T):::.

1L

and ( )* indicates the partial derivatives are evaluated along the

nominal path.

There are three sets of differential equations adjoint to the

differential equations of motion and three sets of influence functions

which tell how much a terminal condition is changed by a small change in

some initial state variable. The three sets of influence functions are

x , ,and X

The general form of the adjoint differential equations is

d [F (t)]T X (40)
dt- .

with boundary conditions

xT
k(tf) :( )t tf (41)

tf
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x (tf) = ( ) (42) -

y~ t tf

T (*f (43)

t t

where

.~.= { ~ ,... }(44) -

D- a n

DTJ (45)
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._ (46)
57 ~ax 1n

The adjoint equations, Eq (40), must be integrated backward since

the boundary conditions are given at the terminal point, t =tf

The steepest-ascent method seeks to find the 6U (t) programs that

maximize the change in the pay-off function, d4 , for a given value of

the integral

t f
2 T

(dP)2  tf 6UT (t) {W (t)}6U (t) dt (47)

to

Since dP is the "length" of the step in the U hyperspace, dP

must be chosen small enough for the l inearization leading to Eq (37) to

be reasonable. [W (t)] is an drbitrary symmetric m x m matrix of

weighting functions which may be used to improve tne convergence of the

ste epest-ascent procedure.
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The proper change in the control variable program, 6U (t),

is (9:257)

-12U (t) = + {W}-I {G}T (A - I I¢) -

EdP 2 aT 1 1 1/2

-1 T -1
+ {W_} {G} A_ IT d_ (48)

where

T
d 3 d'- X (to) 6X (to) (49)

S ".(50)

iT"

A =A A -(51)

p 7 (52)

t tf
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al + . -y ) (53)
-tt t f 

+ 3Q f (54)
t tf

tf

I =f T {G} {W__ {G} A dt (55)

to

tf

T -1 T
f X {G} {W} {G} X dt (56)

to

tf T -1 T

I x [G} {W} {G} X dt (57)

t0

The + sign in Eq (48) is used if p is to be increased; the - sign

is used if c is to be decreased. The numerator under the square root

in Eq (48) can become negative if d8 is chosen too large; thus there

is a limit to the size of dB for d given dP. Since dP is chosen to

insure valid linearization, the ds asked for must also be limited.
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For the change in the control variable program given by Eq (48)

tne predicted change in the pay-off function b is

2 T -1
dop = + {((dP) - d I d )

T -1 1/2
(I - I I

T -1 T
+ I I d + X (t o ) 6X (to ) (58)

If dp = 0 and 6X (to) 0 , from Eq (49), dB = 0 and Eq (58)

becomes

T -1 1/2
S+ (I1- I I (59)

- - '. -'P'

which is a "gradient" in the function space. As the optimum control

variable program is approached and the terminal constraints are met

(d'= 0), this gradient must tend to zero.
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Control Variable Inequality Constraint. The maximum load factor

limit is the constraint in effect at velocities above the corner

velocity and is given by Eq (25). Putting that equation in the form of

Eq (61) gives

C(X ,U) 62286.8 (93) I
2I

While the angle of attack is on this constraint boundary, the !

adjoint differential equations are given by Eq (65). Two additional

vectors are required for the calculation of the influence functions.

The first is

-C T
= {0, 1, 0, 0, 01 (94)

and the only non-zero elements of the second, C/3X , are
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Th! Grdaient ana Control Variable Changes

The calculation of the control variable changes, 6U (t) , dnd the

grddient of the function space in Eqs (48) and (55) through (57) require

the gradient matrix [G] The elements of this matrix are given in

Appendix B. Taking 6X (to) = 0 , the constant values associated with

the gradient and control program changes are

0 dT dy (89) -'

(t) =0 (90)

T
X., (t) = {0, 0, 0, 0, 0, 1} (91)

T
X (t) = {0, 0, 0, 0, 1, 0} (92)

Inequality Constraints

Two control variables are constrained by physical considerations:

the angle of attack, c , and the throttle control, r The constraint

on the throttle setting, 0 5 i 1 , and the maximum lift coefficient

limit on the angle of attack are not constraints in tne sense that a

variable is determined in terms of the remaining control and/or state

variables. Rather, they are bounds on the minimum or maximum values

that these variables may attain. The only constraint on a function of

the control and/or state variables is the maximum load factor limit on

the angle of attack (Fig 1).
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f 6. {(g) 7r(sinccosli -cosEsilvsiji)

max

-cosy~ + Cl1GV 2 CL ctcospi (85)

where

=pOS

Adjoint Equations

Integrdtion of the adjoint differential equations, Eq (40),

requires the adjoint matrix [F] .The elements of this mnatrix are

given in Appendix A. The boundary conditions for the adjoint equations,

Eqs (41) through (46), are

X (tf)0 (86)

T
1 Y (tf) f {, 0, 0, 0, 0, 1 }(87)

T
X (tf) ={0' 0, 0, 0, 1, 0 }(88)
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with-

Is~ f . f6]T (79)

and

f v cosy cosX (80)

f = V cosy sinx (81)

f = V siriy (82)

T
f4= = ,{(wi maxXr cos E cosv -Sifly

C CiV (CD + K1 CL~L (83)

fco -g) r(coscsinvcosi + sinesinvi)
y Wma x

+ C 1Ov2 C L ces inli (84)
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The forward integration of the equations of motion is stopped when the

heading angle reaches 1800.

The terminal constraint function, also part of the maneuver

definition, is

T y 0 (77)

The aircraft is required to have a flight path angle of zero at the end

of the maneuver.

Equations of Motion

The nonlinear differential equations of motion, Eqs (30) and (36),

were given earlier as Eqs (7) through (12). However, this earlier form

did not explicitly involve the state and control variables given in Eqs

(72) and (73). Substituting Eqs (17), (18), (20), and (21) into Eqs (7)

through (12) and rearranging yields the following form of the equations

of motion

x = f [x (t), u (t)] (78)
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The state vector, X (t) , is

X(t) = [X(t), Y(t), h(t), V(t), X(t), Y(t)]T (73)

and the only non-zero initial conditions are

h(t 0 ) = hi = 13,990 feet (74)

and

V(t0 ) = vi (75)

Three values of initial velocity, Vi , will be used in this study.

The remaining initial conditions, X (to), Y (to), X(to) , and y (to),

are all zero.

The stopping condition which determines the final time is part of

the definition of the maneuver

= : XI - 0 (76)

where w is in radians.

0
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V. Solving the Minimum Time Problem

The steepest-ascent method, as detailed in the previous section, is

now specifically applied to the optimum programming problem of minimum

turning time for a high performance aircraft with thrust vectoring

capability.

The problem, as formulated here, was written into a FORTRAN 5

computer program for numerical solution. A copy of the prcgram is

included in Appendix H.

4

Variables

The quantity to be extremized is the final time, tf The final

time can be minimized by maximizing the pay-off function

S= tf (71)

The control vector, U (t), is

U (t) = [(t), a(t), i(t), E(t). V(t)I (72)
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* *. 7 . . ° . , •".'," . ..' - -. .-. . - yu ,,i , w .au . . .' '-

1 tf AT
dtf . - G 6 U dt (70)ff

t
o

If Idtfl is greater than a preselected maximum dllowable value, 6U (t)

is scaled down to achieve this value. Again, time intervals on the

constraint boundary must be taken into account.

10. A new nominal control variable program is obtained using Eq

(60). Steps (1) through (10) are repeated until the terminal

T -1
constraints '_ =0 are satisfied and I I I I ,the

square of the gradient, tends to zero.
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4. Eqs (55), (56), and (57) are then integrated backward to obtain

the values of ITT , ITO , and I The limits of integration are

modified, if necessary, to take into account any time intervals that the

solution may be on a constraint boundary.

5. The values of , , T2 , p achieved by the nominal

path are examined. Desired terminal condition changes d1TI , di2

d~p are chosen to bring the next solution closer to the required

terminal constraints T = 0

6. A reasonable value of (dP)2/(tf - to) is selected. This is a

mean-square deviation of the control variable programs from the nominal

to the next step. This simplification of Eq 47) may need to be

adjusted for time intervals that the solution is on a constraint

boundary.

7. The quantity (dP)2 - dTTI1 dT is calculated. If negative,T.

dT is scaled down to make this quantity zero. If the quantity is

positive, it is left as is.

8. Using dP and dT , modified in step (7) if necessary, and

taking 6X (to) : 0 , 6U (t) is calculated from Eq (48).

9. If tf , the final time, is not specified or is being

extremized, the predicted change in final time for the next step, dtf

is calculated as

33
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While on the constraint boundary, say from t =t to t = t2 , a

* control variable is specified in terms of the state variables and

possibly the remaining control variables by the relations C = 0 or S

0 . No variation in the constrained control variable is calculated

for t1 < t < t2 since the variable is not free over this interval.

This same variable is omitted over the interval t < t < t2  from the
1. 2

above-mentioned four integrations, since the integrated values determine

the step length and gradient in the U hyperspace with respect to free

6U

During tI < t < t2 , the dimension of the control variable

hyperspace is reduced by one. This reduction is accomplished by zeroing

the appropriate elements of the weighting matrix .W].

Computing Procedure

The following steps detail how the steepest-ascent method is used

to solv? a general optimum programming problem (9:251).

1. The nominal trajectory is calculated by integrating the

nonlinear differential equations, Eq (30), with a nominal control

variable program and starting from specified initial conditions, Eq

(31).

2. The influence functions X , A , 2 . p are
1

calculated by backward integration of the adjoint differential

equations, Eq (40), (65), or (69), as appropriate. The required partial

derivatives are evaluated along the nominal trajectory.

3. The quantities , , ... X are calculated using Eqs

(50) and (51).
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dS aS + aS X (67)

aS as f (68)= +

and f (X, U, t) appears in Eq (68), dS/dt may be an explicit

function of the control variables U (t). If not, succeeding time

derivatives of S may be considered until S(k) does explicitly involve

the controls. Let this value of k be called q ; this is called a

qth order state variable inequality constraint. S(q) = 0 now plays

exactly the same role as C = 0 did for control variable inequality

constraints. The differential equations for the influence functions

x(t) are the same as Eq (65) with C replaced by S(q)

-1 T
d X - {GF - { I} S(q), S( q )  (69)
cit DU a

{ _ _ ( )} A_ (9

Effects Upon Intervals of Integration. When either a type C or

type S constraint is in effect, i.e., C = 0 or S = 0 , the

integration in Eqs (47), (55), (56), and (57) leading to the calculation

of (dIP) 2

o I , IT, and I must be altered.

14
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Therefore, on the constraint boundary C = 0, the form of the

adjoint differential equations, Eq (40), becomes

-1 T
d X {F}- {G(-.) (() )} A (65)

(au

State Variable Inequality Constraint. In a type S constraint

relation, Eq (62), the constraint does not explicitly involve the

control variable program U (t) While the solution of the optimal

control problem is on the constraint boundary, S = 0 Since the

constraint function S must vanish, its time derivatives must also be

zero.

dkS S(k) -0 (66)

dt

for k 0, 1, 2, ... on the constrdint boundary. Since
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S [X (t), t] < 0 (62)

where C is a scalar function of X (t), U (t), and t; S is a scalar

t function of X (t) and t; and U (t) must remain within, the limits imposed

by C < 0 or S < 0

Control Variable Inequality Constraint. The type C constraint

relation, Eq (61), explicitly involves the control variable program

U (t). The constraint function may also involve the state variables

X (L) and/or explicitly involve the independent variable t (time)

While on the constraint boundary, C = 0 and the neighboring

solutions must satisfy

(C) X + 9C 6U 0 (63)ax - + T)u -

Neighboring solutions must also satisfy the perturbation

differential equations, Eq (37). Substituting Eq (63) into Eq (37)

yields the set of perturbation equations which a neighboring solution

must satisfy if it is to remain on the constraint boundary C 0

-1
d (SX) (F - G} C) (aC )6X (64)
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New control variable programs are obtained as

(t)new = U (t)old + 6U (t) (60)

where 6U (t) is given by Eq (48). This new control variable program

is used in the differential equations of motion, Eq (30), and the entire

process is repeated until the terminal constraints are met and the

gradient, given by Eq (59), is close to zero. The optimum control

variable program has then been obtained.

Inequality Constraints

Inequality constraints on functions of the control and/or state

variables have been incorporated into optimal programming problems by

many investigators by adjoining penalty functions to the pay-off

function. Denham and Bryson (13) and Bryson, Denham, and Dreyfus (14)

include such constraints "in a manner which is naturally consistent with

the necessary conditions for an extremal solution. Calculation of the

influence functions on terminal quantities takes into account that

portions of the path are on the constraint boundary" (13:25). While the

authors only treat the case of a scalar control variable, their work is

extendea here to a vector of control variables.

Two types of inequality constraints are considered:

C [X (t), U (t), t] < 0 (61)

and
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3C 3 C2C3 (62286.8)

aX3  h oV2 (1 - C2h) 95

aC 3C 2(62286.8 )  (96)

'74 =V 3

where

2 n 17

1
3 n-i

State Variable Inequality Constraints. At the corner velocity, the

constraint relation is given by Eq (26)

S(X) 62286.8 0.2 : 0 (97)
V

This is a type S constraint since the control variables, U

are not explicitly involved. Upon rearranging and taking the first time

derivative of S which must also vanish
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: -0.2 {2aVV C2C3 Vh (98)(1 -C2h

where C2 and C3 are as given following Eq (96). Substitution of Eqs

(82) and (83) into Eq (98) yields a constraint relation which explicitly

involves control variables. This relation and its partial derivatives,

as required for the adjoint differential equations, Eq (69), are

detailed in Appendix C.

The question now arises as to when the type S constraint is in

effect and when the type C constraint is the proper relation to use

for the integration of the adjoint differential equations. The type S

constraint was used when the velocity was within some tolerance of the

corner velocity. This velocity tolerance was varied from 0.1 to 50

feet/second, but no definite relationship between the tolerance and

change in the optimal solutions was found.

Overall, the addition of the type S constraint to the numerical

procedure appeared to have very little effect. Optimal solutions

obtained with both type S and C constraints incorporated were

essentially the same as those obtained with only the type C constraint

included in the computer program.
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The Weighting Matrix

The weighting matrix [N(t)] introduced in Eq (47) was taken to

be an identity matrix of dimension five for two reasons. First, this

reduced the complexity of the problem, with a concurrent reduction in

computer execution time. Second, not enough was initially known about

the problem to make a more appropriate choice. Some computer runs were

made with individual diagonal elements of the weighting matrix

increased/decreased by as much as a factor of ten from the nominal value

of one, but the results were inconclusive as to the influence of

individual elements of [A] on the convergence to an optimal solution.

Further research discovered that "the proper weighting matrix is

the inverse of the Hessian" (15:58). The existing computer program was

modified so that

2

W j(t) (99)t
i f

Since the final time is not an explicit function of the control

variables, implicit numerical differentiation was required. Also, []

was no longer a constant matrix, and had to be evaluated at every time

step over the interval of integration from t t t0  to t =tf .Since

* the time increment used for integrating the equations of motion was 0.1

second, the final time was nominally on the order of 10 seconds, and

there dre five control variables, this modification resulted in an

W unacceptable increase in Computer execution time and was abandoned.
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Finally, it was thought that the diagonal elements of a constant

weighting matrix could be used to normalize the directions in the

five-dimensional control variable hyperspace. Normalizing the range of

all controls to be from zero to one or between ±one should change the

relative influence of the angle of attack and throttle controls as

compared to the bank and thrust angle controls since the latter three

controls were not restricted but allowed to range between ± 1800

However, for most solutions of interest, the angle of attack and

throttle controls stayed at or near their maximum values. Therefore,

normal ization of the control space was not incorporated.

All solutions were generated with a constant 5 x 5 identity matrix

as [W] .Over any time interval during which control variable

constraints were in effect, the element of [] corresponding to the

constrained control was set to zero to eliminate that variable's

contribution to the calculation of the gradient and the next iteration's

control variable program.

Step Length

Successive improvements in the control variable program are

obtained by moving a step length along the direction of the steepest

ascent in the control variable hyperspace. This step length is given by

Eq (47). The suggested procedure (9:251) recommends selecting a

reasonable step length rather than calculating a value for (dP)2

Initially, this suggested procedure was followed, assuming small1,

constant values for the elements of 6U. However, the addition of

V these five arbitrary values only further complicated the problem without

noticeably improving convergence to an optimal solution.

45

M



The determination of the step length was revised to be directly

proportional to the error in the terminal constraint, y (tf), in the

following way

dP =[tf {2Y (tf)} 2 1/2 (100)

This greatly improved convergence to solutions. The choice of the

constant 2 in Eq (100) was purely arbitrary. All solutions were

obtained with this method of calculating the step length.

Convergence Criteria

Angular. The numerical technique was considered to have reached an

optimal solution when-the terminal constraint was satisfied within 0.001

radians (Iy(tf)j < 0.001) The final time was determined by the

stopping condition being satisfied to within 0.001 radians

(lxI - 0.001).

Gradient. It was originally expected that the gradient would

approach zero as an optimal solution was reached. This expectation was

never completely realized. Upon modification of the computer program to

remove the influence of a constrained variable upon the calculation of

the gradient while the constraint was in effect, the magnitudes of the

gradients were indeed reduced, as expected. However, lower turning

times were not consistently accompanied by lower gradients.

Difficulty in obtaining acceptable convergence when the optimal

solution possesses a singular arc is not new. H.J. Kelley encountered

this same problem in his work in optimization as early as the 1960s.
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Denham and Bryson reported over 20 years ago that: "Modifications to

improve convergence in singular arc problems are being investigated by

the authors and others" (13:29), but the problem apparently remains

unresolved. It is noted, though, that the optimal solutions obtained in

this study did move toward the singular arc, as expected.

It is recalled here that the numerical solution of this optimal

control problem only generates relative minima or maxima. The

determination of a global extremum, or optimum solution, must be made by

examination of all of the local extrema. This study does not presume to

have found all local extrema in the function space and therefore cannot

claim an optimum solution. Because of the poor correlation between

lower turning times and correspondingly lower gradients, the gradient

was not given major consideration in the evaluation of which control

program and trajectory were most optimal; the time to turn was used as

the major criterion.
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VI. Results

Optimal solutions were obtained for a wide variety of cases,

covering a range of initial conditions 4nd aircraft characteristics.

The results for the nominal aircraft, which has been used as the

baseline for the previous studies (4, 5, 6, 7) are discussed first. The

effects of varying aircraft characteristics are examined next.

Nominal Aircraft

The nominal, or baseline, aircraft, as previously discussed, nas

both unrealistically low induced drag and a high thrust/weight ratio.

However, five cases run with this model for comparison purposes are

presented. The best, or most optimal, results are given in Table I and

will be discussed in detail. These three cases show that significant

reductions in turning time can be obtained through the use of vectored

thrust.

Table I

Best Results: Vectored Thrust, Nominal Aircraft

Case Vi  Vf hf AE Time

# (ft/sec) (ft/sec) (ft) (ft) (sec)

1 420 662 11866 1951 10.21

3 621 690 13219 637 8.24

4 903 660 13714 -6186 8.60
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The remaining two cases cre less optimal results and will be

presented later dnd in less detail. All cases in this study began at an

initial altitude of 13,990 feet. Ali results obtained for the nominal

a_ are summarized in Table IV, Appendix D.

.orner Velocity. The corner velocity VC , as given by Eq (27), is

692 feet/second (fps) at the initial altitude of 13,990 feet and varies

very little over the altitude ranges encountered during the maneuvers

V C = 700 fps at 14,700 fhet, VC = 670 fps at 12,000 feet).

The importance of the corner velocity is that it is the velocity at

4hich tne dircraft achieves its maximum turn rate. It was expected and

fhund to be true That trajectories which stay closer to the corner

velocity result in faster turning times. The maintenance of the corner

velocity is shown in Figs. 2 and 3 for Case 1, Figs. 4 and 5 for Case 3,

dnd Figs. 6 and 7 for Case 4.

4 Thrust Vectoring. The greater the aircraft's initial velocity, the

more thrust vectoring capability was used to get the aircraft to, and

keep it at, its corner velocity. As shown in Fig. 8, for a low initial

velocity (Case 1, V. 420 fps), only slightly over 120 of thrust angle

of attack and 30 of thrust sideslip are used. The reduction of the

thrust angles to zero corresponds to the throttle being "chopped" to

zero partway through the maneuver (Fig. 9). For a higher initial

velocity (Case 3, V i = 621 fps), Fig. 10 shows the ranges of thrust

vectoring increase to 700 angle of attack and 80 sideslip as partial or

full throttle is used throughout the turn (Fig. 11). At the highest

initial velocity considered (Case 4, V i : 903 fps), Fig. 12 shows an

even greater increase in the range of thrust angles used, to 900 angle

of attack and 1800 sideslip.
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The bank angle programs, Figs. 16 through 18, agree with the trends

reported b. Well and Berger (10). For initial velocities less than the

* corner velocity, the aircraft banked and descended to accelerate toward

V For initial velocities greater than the corner velocity, the

aircraft bank angle was much less as airspeed was bled off to decelerate

to V C However, because of the thrust reversal capability, the use of

the vertical plane to gain or lose airspeed was not very prominent.

Heading and Flight Path Angles. The heading angle progressed

linearly, or very nearly linearly, with time for all cases. Fig. 19

(Case 3) is representative of all heading angle time histories.

The flight path angle time histories for Cases 1, 3, and 4 all

exhibited the same parabolic shape shown in Fig. 20. The lower initial

velocity case, Case 1, has a much larger peak value of negative flight

path angle, approximately -330, than Case 3 (peak value -13.50). The

larger peak value corresponds to the steeper dive made from lower

initial velocity to accelerate to Vc

Case 4, starting from a high initial velocity (V~ = 903 fps),

initially shows a small period of positive flight path angle in Fig. 21.

This is only maintained very briefly as the aircraft mainly used reverse

thrust to bleed off airspeed.
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Thrust vectoring cannot increase the aircraft's available thrust,

nor can it increase the aircraft's velocity. Therefore, this capability

had very little effect on the low speed cases where additional velocity

was needed to significantly reduce the turning time. Consequently, only

a minor improvement in turning time was found in Case 1.

The benefit of vectored thrust is apparent at the higher initial

velocities. Thrust is vectored through large angles and turning times

are reduced significantly over those of previous studies (4:99, 5:60,

6:59, 7:52). The most effective use of thrust vectoring is seen in Case

4 (Fig. 12, Vi = 903 fps). The maneuver was flown at full throttle with

the thrust initially vectored to 1800, effectively reversing thrust and

quickly decelerating the aircraft to its corner velocity. The thrust

angles were then modulated to keep the aircraft at Vc (approximately 690

fps) for the rest of the turn.

In all three cases, the thrust was directed into the turn,

supplementing the aircraft's lift.

Other Controls. The remaining controls, angle of attack and bank

angle, are presented in Figs. 13 through 18. The optimal program for

the angle of attack, Figs. 13 through 15, is to maintain maximum angle

of attack, ax being dictated by the velocity as displayed in Fig. 1.

The angle of attack time history for Case 1, Fig. 13, is a good

example of the optimal solution maintaining the highest possible angle

of attack. The aircraft first overshot the corner velocity (Figs. 2 and

3) and the angle of attack dropped only 0.650 before the overshoot was

halted and the aircraft decelerated back toward Vc. increasing the angle

of attack until the maximum lift limit was again encountered.
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Comparison Against Previous Results. The use of vectored thrust

improves turning time more than the other methods of reducing turning

time previously investigated (4, 5, 6, 7). The best turning times

achieved with vectored thrust for the nominal aircraft are summarized in

Table I and the results of previous studies are summarized in Tables VII

through X, Appendix G.

A comparison of minimum turning times obtained with vectored thrust

against those using direct sideforce (7:52) shows: vectored thrust 0.15

* seconds faster for Vi = 420 fps (Case 1), vectored thrust 1.23 seconds

faster for V. = 621 fps (Case 3), and vectored thrust 2.08 seconds

faster for V. = 903 fps (Case 4). The benefits of thrust vectoring

increase with increased initial airspeed.

Specific Energy. An important practical consideration in

air-to-air combat maneuvering is an aircraft's specific energy, given by

E = h V2  (101)
2g

Previous studies have used different values of g in the calculation

of E. For this investigation, g was taken to be 32.131 feet/second2

the value of the gravitational acceleration at the initial altitude.

As high an energy level as possible is desired so that kinetic and

potential energies may be traded to one's advantage. Specific energy

gains/losses through the maneuvers are included in the tables of results

and show that faster turning times are achieved at the expense of

specific energy. However, no attempt was made in this study to optimize

turning performance with respect to specific energy.
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Table II

Less Optimal Results: (Cases 2 and 5)

Vectored Thrust, Nominal Aircraft

(corresponding better results, Cases 1 and 4, also
shown for ease of comparison)

Case Vi  Vf hfE Time

# (ft/sec) (ft/sec) (ft) (ft) (sec)

1 420 662 11866 1951 10.21

2 420 863 11635 6490 10.58

4 903 660 13714 -6186 8.60

5 903 738 14676 -3528 9.27

Less Optimal Results. Two other cases, Cases 2 and 5, were also

run with the nominal aircraft but achieved less optimal solutions.

These cases are summarized in Table II and the factors which led to

slower turning times are discussed. The less optimal solutions resulted

from slight changes in the initial control variable programs from those

used to obtain the more optimal results. This points out the

steepest-ascent method's sensitivity to initial control variable

programs and its tendency to converge to the nearest, rather than most

optimal, solution. Control and state variable time histories for Cases

2 and 5 are included as Figs. 22 through 34 in Appendix E.

Cases 2 and 5 are compared against Case 1 and Case 4, respectively.

It is first noted that the slower turns of Cases 2 and 5 resulted in

higher final specific energies, as expected.
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The slower turning times are a result of the aircraft not

maintaining the corner velocity. Figs. 22 and 23, for Case 2, show that

the aircraft did not attempt to stay at V at all. Only small amountsc

of thrust vectoring (Fig. 24) and much higher throttle settings (Fig.

25) were used, resulting in higher velocities and much lower angles of

attack (Fig. 27).

The importance of maintaining Vc is also seen in a comparison of

Cases 4 and 5. In Case 5, the slower turn, the aircraft never slowed

enough to reach the corner velocity (Figs. 28 and 29). While full or

very nearly full throttle was used (Fig. 30), in Case 5 thrust vectoring

was not used to reverse the thrust for maximum deceleration (Fig. 31).

Instead, the aircraft maintained positive flight path angle (Fig. 32)

and initially banked less (Fig. 33), climbing rather than reversing

thrust to decelerate. This use of the vertical plane instead of thrust

reversal to decelerate was clearly less optimal, resulting in higher

velocities, lower angles of attack (Fig. 34), and a slower turning time.

Variation of Aircraft Characteristics

Brinson (7) varied aircraft thrust to weight ratio (T/W). and

induced drag (KI) and determined optimal turning solutions for a more

realistic aircraft without any maneuver enhancement capabilities. These

same parameter variations were used in this study to evaluate the

benefits of thrust vectoring on a more realistic aircraft. Brinson's

results (7:53) are summarized in Table X, Appendix G. The results of

this study are summarized in Table III. State and control variable time

histories are included as Figs. 35 through 59 in Appendix F.
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Table III

Results: Vectored Thrust,

Variation of Aircraft Characteristics

Case V K Vf hf AE Time

# (ft/sec) (ft/sec) (ft) (ft) (sec)

6 420 0.75 0.05 687 11651 2260 10.92

7 420 1.50 0.22 643 11499 1198 10.47

8 621 0.75 0.05 634 13175 - 561 9.22

0 621 1.50 0.22 518 12896 -2920 9.06

10 621 1.50 0.22 660 12423 - 790 9.45

11 903 0.75 0.05 710 13589 -5245 9.79

12 903 1.50 0.22 461 13452 -9920 9.11

Influence of Initial Control Programs. The variations in aircraft

characteristics were expected to result in solutions and trajectories

distinctly different from those obtained for the nominal aircraft.

However, when the same or similar initial (nominal) controls were used

for a given initial velocity but varying aircraft characteristics, the

solutions obtained had very similar control variable programs. It again

seems apparent that the steepest-ascent method, as implemented here, is

heavily influenced by the initial control variable program. This

influence was observed for all initial velocities and casts doubts on

the global optimality of the solutions obtained for variations of

aircraft characteristics.
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Low Initial Velocity (Vi 420 fps). Cases 6 and 7 are solutions

obtained with T/W reduced from 1.5 to 0.75 and K 1 increased from 0.05 to

0.22, respectively. No improvements in time to turn were found when the

aircraft initiated the maneuver from this low velocity. Any use of

thrust vectoring decreased the amount of thrust available for

acceleration, thereby making it more difficult for the aircraft to get

to V if that is even possible, and resulting in slightly longerc'

turning times.

Medium Initial Velocity (V. - 621 fps). Case 8 is the solution for

lower T/W (0.75) with nominal K, (0.05). As seen from Brinson's thrust

required/available curves (7:43) , this aircraft model is not thrust

limited, but simply has less available thrust than the nomindl aircraft.

This lower available thrust resulted in the aircraft maintaining full

throttle for the entire turn. Even with full throttle, the aircraft did

not reach the corner velocity (Figs. 35 and 36) , so the angle of attack

remained at the limit imposed by C L ( =11.4590) for the entire
max

turn. The remaining state and control variable programs (Figs. 37

through 39) remained essentially the same as for Case 3.

A variety of comparisons may be made among the results obtained in

this investigation and by Brinson (7:53). Two are presented here.

First, a comparison between Cases 3 and 8 of this study: given a

low drag aircraft with thrust vectoring capability, reducing th e

available thrust by 50% (from T/W = 1.50, Case 3, to T/W =0.75, Case 8)

increased the time to turn by 0.98 seconds.
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Second, a comparison between Case 8 of this study and Brinson's

result for an aircraft with no maneuver enhancement capability: given

an aircraft characterized by T/W = 0.75 and KI = 0.05, the addition and

use of thrust vectoring capability (Case 8) enabled the aircraft to turn

0.39 seconds faster.

Cases 9 and 10 are solutions with nominal T/W (1.50) and increased

K1 (0.22). As shown in Brinson's thrust required/available curves

(7:45), this aircraft model is thrust limited: it cannot attain Vc.

The difference between these two cases is that Case 9 (Figs. 40 through

44) closely followed the control variable program of Case 3, while in

Case 10 (Figs. 45 through 49), far less vectoring of the thrust occurred

(Fig. 49). Since in both cases the aircraft was thrust limited, in

neither case was V reached and the angle of attack remained at amaxcma

11.4590 (0.2 radians). The greater use of thrust vectoring in Case 9

resulted in the aircraft slowing during the turn (Figs. 40 and 41),

while in Case 10, using less thrust vectoring, the aircraft remained

near its maximum attainable velocity (Figs. 45 and 46). The turn was

completed 0.39 seconds faster in Case 9 than in Case 10, but at a

sacrifice of specific energy, E. The final specific energy in Case 10

was 2,127 feet more than that of Case 9.

Again, several comparisons may be made among the results obtdined

in this investigation (Cases 3, 9, and 10) and by Brinson (7:53). Two

are presented here.

First, a comparison among Cases 3, 9, and 10 of this study: given

a high thrust/weight aircraft with thrust vectoring capability, the

increase in induced drag (from K1 : 0.05, Case 3, to K1 = 0.22, Cases 9

jnd 10) increased the time to turn by 0.82 seconds for the faster time
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solution (Cases 9 and 10) increased the time to turn by 0.82 seconds for

the faster time solution (Case 9) and 1.21 seconds for the higher energy

solution (Case 10).

Second, a comparison among Cases 9 and 10 of this study and

Brinson's results for an aircraft without maneuver enhancement

capability: given an aircraft characterized by TIN = 1.50 and K1=.

0.22, the addition and use of thrust vectoring capability resulted in a

turning time 0.26 seconds faster at a sacrifice Of approximately 1,900

feet of specific energy (Case 9) or 0.13 seconds slower with a slight

gain (approximately 225 feet) of specific energy (Case 10).

High Initial Velocity (V~ 903 fps). The control variable

programs for Case 11 (reduced T/W, Figs. 50 through 54) and Case 12

(increased K1 . Figs. 55 through 59) are very similar to those for the

nominal aircraft. The maneuver was flown with full throttle and the

thrust initially reversed to uL-elerate toward V c* The thrust angles

then went to 900, directing the thrust into the turn to supplement lift.

The higher T/W and higher K1, in Case 12 allowed the aircraft to

decelerate much more rapidly than the low thrust, low drag model of Case

11. In Case 12, the corner velocity was reached and the turn completed

0.68 seconds faster than in Case 11. In Case 11, V was never reached.
wc

The benefits of thrust vectoring are clear when these optimal

controls and trajectories are compared against those of an aircraft

P without maneuver enhancement capabilities (Table X, Appendix G). For

the low thrust, low drag aircraft, the use of vectored thrust reduced

the time to turn by 1.03 seconds. The turning time for the high thrust,

high drag aircraft model was reduced by 1.40 seconds.
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Limited Thrust Angles. Since it is unlikely that an aircraft would

have an unlimited range through which to vector thrust (2, 3), Cases 13

through 16 were run to examine the effects of limiting the thrust

angles. Thrust angle of attack was limited to 200 with a thrust

sideslip limit of either 00 or 100. Nominal aircraft characteristics

were used. The results are summarized in Table VI, Appendix 0.

Overall , the results obtained with limited thrust angles are

inconclusive. This is perhaps due to the small number of runs made and

solutions obtained, but more likely a result of the influence of the

initial control variable programs, as previously discussed. A more

thorough investigation needs to be made to examine the effects o f

realistically limited thrust angles.

When the maneuver was started from the medium initial velocity, 621

fps, thrust vectoring was used but the thrust angle of attack limit of

200 was always encountered and in effect. When the thrust sideslip was

limited to 00, this limit also remained in effect throughout the

maneuver. However, when the thrust sideslip limit was 100, thie limit
rb

was never reached. In both cases, limiting the thrust angles increased

the time to turn.

For the high speed cases, (Vi 903 fps) , the turning times also

increased when the thrust angles were limited. When thrust was

vectored, the thrust angle of attack limit of 200 was encountered.

However, the fastest turns were obtained when no thrust vectoring was

used at all.

97



VII. Conclusions and Recommendations

Three major conclusions are drawn based upon the results discussed

in the previous section.

I. Major reductions in turning time can be realized through the

use of vectored thrust. The higher the initial velocity, the greater

the reduction in turning time. For an initial velocity of 903

feet/second at an initial altitude of 13,990 feet, the use of vectored

thrust reduces the time to turn by 2 - 2.5 seconds.

2. Thrust vectoring was used to supplement the aircraft's lift by

directing the thrust into the turn.

3. The steepest ascent method, as implemented in this study, is

heavily influenced by the choice of initial control variable programs.

More optimal solutions may be obtained with different starting control

variable programs.

Although the results obtained in this study may not reflect the

most optimal uses of thrust vectoring, even these less-than-optimum

solutions show the dramatic improvements in turning time realizable with

vectored thrust. Any more optimal solutions would only further advance

this point.
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Five recommendations are offered for future research.

1. The previous studies of Johnson (5), Finnerty (6), and Brinson

(7) should be revised to include the singular control, or type S

constraint, when the aircraft velocity is equal to the corner velocity.

Their methods of reducing turning time may be more effective than

previously thought. Such an effort would be simplified by the fact that

all three previous Ftudies used the same technique, with Finnerty (6)

and Brinson (7) modifying the computer program developed by Johnson (5)

to suit their particular investigations.

2. This study's results may be improved if the implementation of

the type S constraint is revised to include corner constraint -

requirements on a control as it enters and exists a singular arc (13,

14).

3. The question of why the gradient does not go to zero when the

optimal solution possesses a singular arc remains to be answered (9,

13:29). 7

4. In future investigations of thrust vectoring to reduce turning

time, the problem may be simplified by keeping constant full throttle

and maximum angle Of attack (as dictoted by the velocity, Fig. 1). This

would reduce the number of controls to three and al low solutions to be

displayed in the three-dimensional control space.

5. The effects of limited thrust angles should be investigated,

particularly in light of the upcoming fl1ight test program (3) and the

current status of two-dimensional engine nozzles (2).
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Appendix A Adjoint Matrix
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The adjoint matrix {F} is defined as

*i

1n

{F (t)} = (38)

f n f n *

1 n

Letting Fi. = @fi/gXj , the non-zero elements of {F} are

F14 = cosYcosx (102)

F15 = -Vcosysinx (103)

F = -Vsinycosx (104)

F24 = cosysinx (105)

F25 = VcosYcosX (106)

F26  = -Vsinysinx (107)

F34 = siny (108)

F36  = VcosY (109)
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1, T . W - 7 7%.. CL7. V -. W-7-

F 43 =gC 1C2C3V (CD + K1CL ct2 (-C 2 h)exp(C 3 -11(110)

0 a

14
F2GaV(C + KC (111)

F44  gI D 1 0 iL (11

0 a4

F 46 =-gcosy (112)

F 3  C .i-clc CVCL Csinp{(1 C2h)exp (C3 -11(113)

F54  COS {~1C Ltiv 4

TT
2(W) (cosssinvcosij sinesinlj)} (114)
V max

F 56 f() TT(cosesinVcosli + sincsinOi
56 Vcos Y max

+ ClaV CL csinlJ} (115)
1 L

F 63  -Vg ClC 2C3CL ccos~I(1 C2h)exp (C3 -1) (116)

F64  1 CCL CLcosI + v~ CS

T fl(sinEcosp. coscs~fifl1Jn)} (117)

max

F 66  =q/2i (118)q
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Appendix B Gradient Matrix
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The gradient matrix (G} is defined as

(li).......(2)
au 1  au m

{G (t)} = (39)

af n af nJ* (fll........ >

Letting G. = /U , the non-zero elements of {G} are

2 2
G = -2gClaV KICL a (119)

a

G4  T (120)g43 9 (70 cos~cosv)(10

max

*T
G -g () rsinEcosv (121)

max

G = T( 'rcossinv (122)

max

G51  Vcosy f ()Wmax T (s in s - coscsinvsin) (123)

1 2L a
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G -i-- Cv aVC (124)52os 1 L 1

G 53  T c-oly{('w) (cossinvcoslJ + sinesinp4} (125)
max

G5jcs w T r(sinpicosE -sinesinvcosj)} (126)
max

G5 Vcosy ff(jcscop(17
max

G61  TG( 61 rr(sin~sin1J + cosesinvcosp)
max

+ ClacV 2 c L ts i np} (128)

G C. CpV 2C~ cosli (129)

G6  .() (sinecosp -cosesinvsin.j) (130)
max

G T-(. r(cosEcosjI + siflesifvsiflp) (131)
max

G .f (.) Tcosecosvsinp1 (132)
max
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where

C3
= (I - 2h)

= Posw

P0S

C1  - W

2 = { gn R0

- 1
3 n-1

9w

4.
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*e Appendix C State Variable Inequality Constraint

G. 4



Substitution of Eqs (82) and (83) into Eq (98) gives the following

P form of state variable inequality constraints

3(0.2)C2C3aV siny

(1-C2h)

(0.4)gV T cosecosv siny

ClaV2 (Co + KICL2 a2 )} (133)

0 at

where

C1  - 2W

C2  n -g

R0

1n-

After rearranging, the elements of the required partial derivatives, l

3S/3U and 3S/aX , are .:,
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as as _ 0 (134)

as aS 2(62286.8) 2 (135)

as _ as _ -2(62286.8:Lg(wT_) cosEcosV (136)

"'U-3  av V3a max

as aS 2(62286.8) T(13)

T 4  - - Vmax

as as 2(62286.8) T S(137)

a-5  V3G I)fcssn 18

Va max

as as 2 (139)
aTI - as (139

as as (140)

2

2 
.

as as (62286.8)C2C3(C3 + 1) siny
V{(1 - C2h)exp(C3 + 2)}

a 2(62286.8)gC2C3{() iTCOSCOSv - siny} (141)

V3 {(1 - C2h)exp(C3 + )}
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62286.8 Wax(pTCSC~v-Sry

-3 - v2  (12

+ C1I {C D + K1c L 2 t2 1) - C2 C3 siny(12
0 cc f(1 - C2h)exp(C 3 + 1)) ~

as as 0(143)

a - T - (628. co -~ + }(144)
6 (1- C2h)
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Table IV

Summary of Results:

VecItored Thrust, Nomindfl Aircraft

;all initial altituoes 13,990 feet)

Vf hfTm

1 420 662 11866 1951 10.21

2 420 863 11635 6490 10.58

3 621 690 13219 637 8.24

4 903 660 13714 -6136 8.60

5 903 738 14676 -3528 9.27
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* Appendix E Time histories for Nominal Aircraft,

Less Optimal Solutions
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Table VI

Summary of Results:

Vectored Thrust, Limited Thrust Angles

(all initial altitudes 13,990 feet)

(nominal aircraft)

Case V. Limits hAE Tm
1 (Deg) Vf hfTm

# (ft/sec) C(ft/sec) (ft) (ft) (see)

13 621 20 0 768 13670 2857 9.91

14 621 20 10 776 13702 3082 10.36

15 932 70192 -44 12

16 903 20 10 740 13912 -4245 11.21

97



Table V

Summary of Results:

Vectored Thrust, Vdriation of Aircraft Chdracteristics

(all initial altitudes 13,990 feet)

* Case Vi  T K1  Vf hf AE Time

# (ft/sec) max (ft/sec) (ft) (ft) (sec)

6 420 0.75 0.05 687 11651 2260 10.92

7 420 1.50 0.22 643 11499 1198 10.47

8 621 0.75 0.05 634 13175 -561 9.22

9 621 1.50 0.22 518 12896 -2920 9.06

10 621 1.50 0.22 660 12423 -790 9.45

11 903 0.75 0.05 710 13589 -5245 9.79

12 903 1.50 0.22 461 13452 -9920 9.11
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Appendix F Time Histories for Variations

of Aircraft Characteristics
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Table VII

Humphreys, Hennig, Bolding, Helgeson (4) -

(Three-Dimensional Turns)

(All initial altitudes 13,390 feet)

Vi  Vf hf AE Time

(ft/sec) (ft/sec) (ft) (ft) (sec)

621 794 12300 2719 10.5

903 886 17635 3771 11.2

Table VIII

Johnson (5) (Thrust Reversal)

(all initidl altitudes 13,990 feet)

V. Vf hf AE Reverse Time -f Thrust (Sec)
(ft/sec) (ft/sec) (ft) (ft) .-

621 781 17338 6839 No 9.575

903 674 15603 -4007 No 10.831 -•-

903 593 10429 -10778 Yes 10.523

with higher order thrust controls:

621 728 17297 5553 No 9.554

903 783 17421 282 No 10.605

903 729 12004 -6405 Yes 10.251
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Table IX

(0 Finnerty (6) (Vertical Plane)

(All initial altitudes 13,990 ft)

Vi  Vf hf AE Throttle Time

(ft/sec) (ft/sec) (ft) (ft) Control (sec)

* Split - S maneuver:

621 649 10069 -3368 Constant 9.631

621 625 10001 -3911 Linear 9.554

621 677 10041 -2818 Quadratic 9.278

621 644 10053 -3484 Cubic 9.271

903 651 8636 -11448 Constant 10.782

Pull-up maneuver:

621 747 18257 6949 Constant 9.776

903 689 19523 231 Constant 11.152

903 771 18585 1156 Linear 10.171
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Table X

Brinson (7) (Sideforce)

(all initial altitudes 13,990 ft)

nominal aircraft: (T/W)max : 1.5

K = 0.05
1

V. T/W K1  AE Sideforce Time

(ftlsec) (ft) (sec)

420 Nominal Nominal 7155 No 10.5694

420 Nominal Nominal 6711 Yes 10.3565

420 0.75 Nominal -- No 10.5748

420 Nominal 0.22 No 10.1153

621 Nominal Nominal 6606 No 9.5637

621 Nominal Nominal 5530 Yes 9.4684

621 0.75 Nomindl -- No 9.6101

621 Nominal 0.22 -1007 No 9.3231

903 Nominal Nominal -4009 No 10.8261

903 Nominal Nominal -4473 Yes 10.6825

903 0.75 Nominal -- No 10.8261

903 Nominal 0.22 -10910 No 10.5100
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7-

Program Length and Characteristics

Results were obtained by running this program on the

Aeronautical System Division's CDC CYBER 845 computer in

both interactive and batch modes. Execution times were

on the order of one cp second per iteration.

The maximum amount of labelled common required for

any part of the program was 7,844 words for the main

program. Total compilation time for the main program and

all subroutines was 4.3 cp seconds.

The following characteristics are given, broken down

by main program and subroutines. Program length is the

word length of the program/subroutine including code,

storage for local variables, arrays, constants, temporaries,

etc., but excluding buffers and common blocks. CM storage

is the maximum memory used during compilation, in words.
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Table XI
Computer Program Characteristics

Program CM
*Routine Length Storage

Main Program

STEEPP 5525 32384

Subroutinesq

DERIVU 129 26240

OERVUU 49 26240

DERVUX 95 26240A

FIGRND 526 27264

FLIMIT 137 26240 i
FNCTNG 199 26240

FNCTNX 147 26240

FNCTNY 527 27264 7
POINTE 62 26240

Total Program Length: 7396 words
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